POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYGTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Mathematics [S1Mech1>MAT2]
Course

Field of study
Mechatronics
Area of study (specialization)

Level of study
first-cycle
Form of study
full-time

Year/Semester

1/2
Profile of study
general academic
Course offered in
polish
Requirements
compulsory

Number of hours

Lecture
30

Tutorials

30

Laboratory classes

0
Projects/seminars
0

Number of credit points
5,00
Coordinators
Lecturers
dr Leszek Wittenbeck
leszek.wittenbeck@put.poznan.pl

Prerequisites

Student possesses mathematical knowledge at basic level from secondary school. Student has logical reasoning skills

Course objective
The acquirement of knowledge and computational skills in single variable differential and integral calculus, linear algebra, analytical geometry and complex numbers that are necessary to handle engineering problems.

Course-related learning outcomes

Knowledge:

1. Student has extended and in-depth knowledge of selected mathematic fields, including complex numbers, linear algebra, analytical geometry and single variable differential and integral calculus. 2. Student has a systematized knowledge in the field of mathematics, useful in formulating and solving complex problems in the area of mechatronics.

Skills:

1. Student is able to obtain information from literature, databases and other properly selected sources, including information in English; is able to combine the obtained information, to interpret and critically assess it, to draw conclusions and to formulate opinions and provide exhaustive justifications for them
2. Student is able to use the known methods and mathematical models - and, if necessary, modify them - for the analysis and design of components of mechatronic systems.
3. Student is able to develop, evaluate and use existing analytical, simulational and experimental methods to solve complex engineering tasks in the field of mechatronics, including non-typical tasks that contain a research component.
4. Student has the ability to learn independently, mainly in order to improve professional skills; is able to identify areas of detailed technical knowledge necessary to implement a specific engineering task and acquire them independently as well as present them
Social competences
5. Student understands the need of lifelong learning
6. Student is able to cooperate and work in a team, and take different roles in it
7. Student is able to define priorities which serve the implementation of a task assigned by him /herself or by others

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Learning outcomes presented above are verified as follows:
Lectures:
assessment of knowledge and skills at the written exam checking knowledge of concepts and the ability to solve short practical tasks
passing threshold: 50% of points; exam issues, on the basis of which questions are prepared, will
be sent to students by e-mail using the university e-mail system.
Tutorials:
assessment of knowledge and skills at the short written tests (at the beginning of every tutorial) passing threshold: 50\% of points

Programme content
COMPLEX NUMBERS
Modulus, argument, principal argument
Form: geometric, rectangular, polar (complex plane)
Square root of complex number
Quadratic equation on complex domain
Derivation polar form from rectangular form
de Moivre"s formula
formula for the n-th root of complex number
formula for multiplication and division of two complex numbers that are in polar form
Euler"s formula for complex numbers
LINEAR ALGEBRA
Definition of a cartesian product
Definition of a matrix
Matrix calculus (addition, multiplication matrix by scalar, multiplication matrix by matrix,
transpose of matrix)
Definition of a determinant
Methods for calculation of a determinant:
o Sarrus" rule
o Laplace expansion
Definition of an inverse matrix
Finding an inverse of a matrix (from definition, Gaussian elimination)
Definition of a rank of a matrix
Properties of a rank of a matrix
Cramer's rule
Kronecker-Capelli theorem
Homogeneous system of linear equations

Gaussian elimination
Eigenproblem (eigenvalues and eigenvectors)
ELEMENTS OF ANALITYCAL GEOMETRY IN 3D
Coordinates of a vector
Length of a vector
Vector calculus (addiction, multiplication vector by scalar, dot product, cross product, mixed product)
Definition of a dot product of two vectors
Definition of a cross product of two vectors
Parallel and perpendicular vectors
Formula for an area of the parallelogram/triangle spanned by two nonparallel vectors
Formula for an area of the parallelepiped/tetrahedron spanned by three nonplanar vectors
Angle between two vectors
SEQUENCES
Definition of a sequence
Monotonicity of a sequence
Definition of a limit of a sequence
Properties of limits of convergent sequences
Squeeze theorem
Definition and properties of Euler's number
Indeterminate symbols
FUNCTION OF A SINGLE VARIABLE
Definition of function, injection, surjection
Explicit, implicit and parametric relations
Definition of an one-to-one function, a monotonic function, an inverse function, a composite function
Trigonometric functions, inverse trigonometric functions, hyperbolic functions, inverse
hyperbolic functions
Definition of limit of a function
Definition of continuity of a function
Asymptote of a function
L"Hospital"s rule
Definition of a derivative of a function and its geometric interpretation
Properties of derivation of functions
Formulas for derivatives of sums, products, differences and quotients
Definition of exact differential and its geometric interpretation
Inverse function theorem
Derivative of a parametrically defined function
Logarithmic derivative
Higher order derivative
Chain rule
Mean value theorem
Extreme values of functions (necessary and sufficient conditions)
Monotonicity of a function
Inflection points (necessary and sufficient conditions)
Concavity and convexity of a function
INDEFINITE INTEGRAL
Definition of indefinite integral and anti-derivative
Properties of indefinite integrals
Integration by substitution
Integration by parts
DEFINITE INTEGRAL
Definition of definite integral
Properties of definite integral
Integration by substitution
Integration by parts
Geometric interpretation of definite integral
Definition of region with repect to x axis
Definition of region with respect to y axis
Application of definite integral:
o area of a region
o arc length
o area of surface of revolution
o volume of surface of revolution
IMPROPER INTEGRAL
first type (infinite interval)
second type (discontinuous integrand)

Teaching methods

Lectures:
lecture is conducted in an interactive way with formulating questions for a group of students or for selected students
student activity during classes is taken into account when the final grade is considered
Tutorials:
sample tasks are solved on the blackboard
detailed discussion of solved tasks

Bibliography

Basic

1. W. Żakowski, Matematyka, T. 1 i T.2, WNT, Warszawa 2003.
2. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 (Definicje, twierdzenia, wzory), GiS, Wrocław 2011.
3. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 (Przykłady i zadania), GiS, Wrocław 2011.
4. T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna 1, (Definicje, twierdzenia, wzory), GiS, Wrocław 2007.
5. T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna 1, (Przykłady i zadania), GiS, Wrocław 2007.

Additional

1. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, T.1, T.2, PWN, Warszawa 2011.
2. M. Grzesiak, Liczby zespolone i algebra liniowa, Wydawnictwo PP, Poznań 1999.

Breakdown of average student's workload

	Hours	ECTS
Total workload	150	6,00
Classes requiring direct contact with the teacher	65	2,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	85	3,50

